
Compilers
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2023 Arthur Hoskey. All 
rights reserved.



Today’s Lecture

 Overview

© 2023 Arthur Hoskey. All 
rights reserved.



Compiling and Running a Program

 Compilers

 Scanning

 Parsing

 Semantic analysis

 Intermediate code generation

 Optimization

 Target code generation

© 2023 Arthur Hoskey. All 
rights reserved.



High-level vs Low-level Languages

 High-level language – Easy for humans to understand. 
Hides many details. For example, Java and Python.
◦ Allow us to focus more on the problem being solved.

 Low-level language – Very detail oriented. Machine-level 
code is the lowest level. Need to know lots of details about 
the machine this code is running on.

© 2023 Arthur Hoskey. All 
rights reserved.

High-level 
Language

(Java, Python)

Compiler Low-level 
Language

(assembler or 
machine code)



Compiler

 Compiler - Converts a high-level language to a low-level 
language.

 For example:

High-level 
Language

(Java, Python)

Compiler Low-level 
Language

(assembler or 
machine code)

© 2023 Arthur Hoskey. All 
rights reserved.

// High-level

// Java code

a = b + c

// Low-level

// Assembler

load r1, a

load r2, b

add r1, r2, r3

store r3, c



Compiler Phases: Front and Back 
Ends

 The compiler phases can be divided into two main parts:
◦ Front end

◦ Back end

 The front-end phases are:
◦ Scanning

◦ Parsing

◦ Semantic analysis

 The back-end phases are:
◦ Optimization

◦ Code generation

© 2023 Arthur Hoskey. All 
rights reserved.



Compiler Front and Back Ends

 Compiler Front End. Responsible for scanning, parsing, and semantic 
analysis.
◦ Input – Source code

◦ Output - Abstract syntax tree (intermediate representation of the code)

 Compiler Back End. Responsible for optimization and code generation.
◦ Input – Abstract syntax tree

◦ Output – Lower-level code (for example Java bytecode, assembly language, machine language)

Front End
Scanning
Parsing

Semantic Analysis

Back End 
Optimization

Code Generation

© 2023 Arthur Hoskey. All 
rights reserved.

Source

x =w+y*z

=

x +

w *

y z

Abstract Syntax Tree 

(Intermediate Representation

Note: Some descriptions may show an 

optimizer between the front and back ends. 

This would optimize the intermediate 

representation and pass it to the back end.



Scanning

 A program is given to the scanner as input.

 The scanner generates a stream of tokens as output.

 Tokens are like the parts of speech in an English sentence.

© 2023 Arthur Hoskey. All 
rights reserved.

High-level 
Language

(Java, Python)

Scanner Stream of tokens

Scanner

Reads characters one at a time 

and groups them together. The 

groupings are called tokens.



Parsing

 Parser - The parser takes a stream of tokens as input and 
produces an abstract syntax tree.

 The parser's input stream of tokens is generated by the 
scanner during the lexical analysis phase.

© 2023 Arthur Hoskey. All 
rights reserved.

Parser
=

x +

w *

y z

Abstract Syntax Tree 

(Intermediate Representation)

Stream of tokens



Semantic Analysis

 Semantic analysis checks that a statement "makes sense" or 
has meaning.

 The parser will not check if a statement makes sense (parser 
checks syntax, only checks if correct according to grammar).

 The types of tokens may be correct, but they may not make 
sense together.

 For example, data types must match.

 The assignment in the following code is semantically correct:

 int x;

 int y;

 int z;

 x = y + z;

© 2023 Arthur Hoskey. All 
rights reserved.

id id

assign

op
math

op

id



Semantic Analysis

 If data types are not compatible in a statement, then it is not 
semantically correct.

 A statement may be a valid to the parser, but invalid to the 
semantic analyzer.

 In many languages, a string is on the left side of an 
assignment and an int is on the right side it will be incorrect.

 The assignment in the following code is NOT semantically 
correct:

 String x;

 int y;

 int z;

 x = y + z;

© 2023 Arthur Hoskey. All 
rights reserved.

id id

assign

op
math

op

id

Semantically 

Incorrect!!!

Data types do not 

match

(parser would not 

identify this error)



Code Generation

 Code Generator - The code generator takes the abstract 
syntax tree (AST) as input and outputs target language code.

 The code generator traverses the AST and generates code 
from that traversal.

© 2023 Arthur Hoskey. All 
rights reserved.

=

x +

w *

y z

Abstract Syntax Tree 

(Intermediate Representation)

Code Generator Target Language 
Code

(assembly, Java 
bytecode)



End of Slides

 End of Slides

© 2023 Arthur Hoskey. All 
rights reserved.


	Slide 1: Compilers
	Slide 2: Today’s Lecture
	Slide 3: Compiling and Running a Program
	Slide 4: High-level vs Low-level Languages
	Slide 5: Compiler
	Slide 6: Compiler Phases: Front and Back Ends
	Slide 7: Compiler Front and Back Ends
	Slide 8: Scanning
	Slide 9: Parsing
	Slide 10: Semantic Analysis
	Slide 11: Semantic Analysis
	Slide 12: Code Generation
	Slide 13: End of Slides

