
Compilers
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

© 2023 Arthur Hoskey. All 
rights reserved.



Today’s Lecture

 Overview

© 2023 Arthur Hoskey. All 
rights reserved.



Compiling and Running a Program

 Compilers

 Scanning

 Parsing

 Semantic analysis

 Intermediate code generation

 Optimization

 Target code generation

© 2023 Arthur Hoskey. All 
rights reserved.



High-level vs Low-level Languages

 High-level language – Easy for humans to understand. 
Hides many details. For example, Java and Python.
◦ Allow us to focus more on the problem being solved.

 Low-level language – Very detail oriented. Machine-level 
code is the lowest level. Need to know lots of details about 
the machine this code is running on.

© 2023 Arthur Hoskey. All 
rights reserved.

High-level 
Language

(Java, Python)

Compiler Low-level 
Language

(assembler or 
machine code)



Compiler

 Compiler - Converts a high-level language to a low-level 
language.

 For example:

High-level 
Language

(Java, Python)

Compiler Low-level 
Language

(assembler or 
machine code)

© 2023 Arthur Hoskey. All 
rights reserved.

// High-level

// Java code

a = b + c

// Low-level

// Assembler

load r1, a

load r2, b

add r1, r2, r3

store r3, c



Compiler Phases: Front and Back 
Ends

 The compiler phases can be divided into two main parts:
◦ Front end

◦ Back end

 The front-end phases are:
◦ Scanning

◦ Parsing

◦ Semantic analysis

 The back-end phases are:
◦ Optimization

◦ Code generation

© 2023 Arthur Hoskey. All 
rights reserved.



Compiler Front and Back Ends

 Compiler Front End. Responsible for scanning, parsing, and semantic 
analysis.
◦ Input – Source code

◦ Output - Abstract syntax tree (intermediate representation of the code)

 Compiler Back End. Responsible for optimization and code generation.
◦ Input – Abstract syntax tree

◦ Output – Lower-level code (for example Java bytecode, assembly language, machine language)

Front End
Scanning
Parsing

Semantic Analysis

Back End 
Optimization

Code Generation

© 2023 Arthur Hoskey. All 
rights reserved.

Source

x =w+y*z

=

x +

w *

y z

Abstract Syntax Tree 

(Intermediate Representation

Note: Some descriptions may show an 

optimizer between the front and back ends. 

This would optimize the intermediate 

representation and pass it to the back end.



Scanning

 A program is given to the scanner as input.

 The scanner generates a stream of tokens as output.

 Tokens are like the parts of speech in an English sentence.

© 2023 Arthur Hoskey. All 
rights reserved.

High-level 
Language

(Java, Python)

Scanner Stream of tokens

Scanner

Reads characters one at a time 

and groups them together. The 

groupings are called tokens.



Parsing

 Parser - The parser takes a stream of tokens as input and 
produces an abstract syntax tree.

 The parser's input stream of tokens is generated by the 
scanner during the lexical analysis phase.

© 2023 Arthur Hoskey. All 
rights reserved.

Parser
=

x +

w *

y z

Abstract Syntax Tree 

(Intermediate Representation)

Stream of tokens



Semantic Analysis

 Semantic analysis checks that a statement "makes sense" or 
has meaning.

 The parser will not check if a statement makes sense (parser 
checks syntax, only checks if correct according to grammar).

 The types of tokens may be correct, but they may not make 
sense together.

 For example, data types must match.

 The assignment in the following code is semantically correct:

 int x;

 int y;

 int z;

 x = y + z;

© 2023 Arthur Hoskey. All 
rights reserved.

id id

assign

op
math

op

id



Semantic Analysis

 If data types are not compatible in a statement, then it is not 
semantically correct.

 A statement may be a valid to the parser, but invalid to the 
semantic analyzer.

 In many languages, a string is on the left side of an 
assignment and an int is on the right side it will be incorrect.

 The assignment in the following code is NOT semantically 
correct:

 String x;

 int y;

 int z;

 x = y + z;

© 2023 Arthur Hoskey. All 
rights reserved.

id id

assign

op
math

op

id

Semantically 

Incorrect!!!

Data types do not 

match

(parser would not 

identify this error)



Code Generation

 Code Generator - The code generator takes the abstract 
syntax tree (AST) as input and outputs target language code.

 The code generator traverses the AST and generates code 
from that traversal.

© 2023 Arthur Hoskey. All 
rights reserved.

=

x +

w *

y z

Abstract Syntax Tree 

(Intermediate Representation)

Code Generator Target Language 
Code

(assembly, Java 
bytecode)



End of Slides

 End of Slides

© 2023 Arthur Hoskey. All 
rights reserved.


	Slide 1: Compilers
	Slide 2: Today’s Lecture
	Slide 3: Compiling and Running a Program
	Slide 4: High-level vs Low-level Languages
	Slide 5: Compiler
	Slide 6: Compiler Phases: Front and Back Ends
	Slide 7: Compiler Front and Back Ends
	Slide 8: Scanning
	Slide 9: Parsing
	Slide 10: Semantic Analysis
	Slide 11: Semantic Analysis
	Slide 12: Code Generation
	Slide 13: End of Slides

