Com

Arthur Hoskey, Ph.D.
Farmingdale State College
Computer Systems Department

© 2023 Arthur Hoskey. All
rights reserved.




ure

© 2023 Arthur Hoskey. All
rights reserved.




Compilers

Scanning

Parsing

Semantic analysis
Intermediate code generation
Optimization

Target code generation

~ PR -

A AL RCRER - g § N

e



High-level language - Easy for humans to understand.
Hides many details. For example, Java and Python.
- Allow us to focus more on the problem being solved.

- Low-level language - Very detail oriented. Machine-level
code is the lowest level. Need to know lots of details about
the machine this code is running on.

High-level Compiler Low-level
Language Language

(Java, Python) (assembler or
machine code)

gh-level vs Low-level Languag

© 2023 Arthur Hoskey. All
rights reserved.




High-level
Language
(Java, Python)

/I High-level

piler - Converts a high-level language to a low-level

or example:

Compiler

/I Java code /I Assembler

a=b+c load rl, a
load r2, b
add ri, r2, r3

Low-level
Language
(assembler or
machine code)

/I Low-level

store r3, C

© 2023 Arthur Hoskey. All
rights reserved.

—J




The compiler phases can be divided into two main parts:
Front end
Back end

The front-end phases are:
Scanning
Parsing
Semantic analysis

The back-end phases are:
Optimization
Code generation



Compiler Front End. Responsible for scanning, parsing, and semantic
analysis.
- Input - Source code
Output - Abstract syntax tree (intermediate representation of the code)
« Compiler Back End. Responsible for optimization and code generation.

Input - Abstract syntax tree
- Output - Lower-level code (for example Java bytecode, assembly language, machine language)

Abstract Syntax Tree
(Intermediate Representation

Front End Back End
Source Scanning Optimization
X =W+Yy*z Parsing Code Generation

Semantic Analysis

Note: Some descriptions may show an
optimizer between the front and back ends.
This would optimize the intermediate
epresentation and pass it to the back end

mpiler Front' and Back End

© 2023 Arthur Hoskey. All
rights reserved.




program is given to the scanner as input.
he scanner generates a stream of tokens as output.
Tokens are like the parts of speech in an English sentence.

High-level Scanner Stream of tokens
Language
(Java, Python)

Scanner
Reads characters one at a time
and groups them together. The
groupings are called tokens.

© 2023 Arthur Hoskey. All
rights reserved.




'- Parser - The parser takes a stream of tokens as input and ‘
produces an abstract syntax tree.
- The parser's input stream of tokens is generated by the
scanner during the lexical analysis phase.

Abstract Syntax Tree
(Intermediate Representation)

Stream of tokens

N’arsing y

© 2023 Arthur Hoskey. All
rights reserved.




Semantic analysis checks that a statement "makes sense" or
has meaning.

The parser will not check if a statement makes sense (parser
checks syntax, only checks if correct according to grammar).

The types of tokens may be correct, but they may not make
sense together.
For example, data types must match.
The assignment in the following code is semantically correct:
int x;
inty;
int z;
X =

AR

assign math
op op



If data types are not compatible in a statement, then it is not
semantically correct.

A statement may be a valid to the parser, but invalid to the
semantic analyzer.

In many languages, a string is on the left side of an
assignment and an int is on the right side it will be incorrect.

The assignment in the following code is NOT semantically
correct:

String x;
inty;
int z; Semantically

>y< Incorrect!!!
/ T 1‘ \ Data types do not
1d

b id match
| (parser would not
assign math identify this error)

op op



- Code Generator - The code generator takes the abstract
syntax tree (AST) as input and outputs target language code.

« The code generator traverses the AST and generates code
from that traversal.

Abstract Syntax Tree
(Intermediate Representation)

Code Generator Target Language
Code

(assembly, Java
bytecode)

kode Generation ‘

© 2023 Arthur Hoskey. All
rights reserved.




© 2023 Arthur Hoskey. All
rights reserved.




	Slide 1: Compilers
	Slide 2: Today’s Lecture
	Slide 3: Compiling and Running a Program
	Slide 4: High-level vs Low-level Languages
	Slide 5: Compiler
	Slide 6: Compiler Phases: Front and Back Ends
	Slide 7: Compiler Front and Back Ends
	Slide 8: Scanning
	Slide 9: Parsing
	Slide 10: Semantic Analysis
	Slide 11: Semantic Analysis
	Slide 12: Code Generation
	Slide 13: End of Slides

